

COSC 3337 Data Science I

Course Information

Term and Year: Fall 2020 Location: Online Meeting Days/Times: Tuesdays -Thursday 8:30-10:00 AM

Contact: By email, MS_Teams during office hours (or by appointment).

Office Hours: 1:00 PM- 1:30 PM TTH.

Course Online System: Blackboard.

Main References: While lecture notes will serve as the main source of material for the course, the following book constitutes a great reference: **Open Textbooks**

Rizk, Nouhad: Building Skills for Data Science https://uhlibraries.pressbooks.pub/buildingskillsfordatascience/

Books

- 1. <u>https://ebookcentral.proquest.com/lib/uh/detail.action?docID=1895687&query</u> <u>=data+mining</u>
- 2. <u>https://ebookcentral.proquest.com/lib/uh/detail.action?docID=4851656</u>

Statistics:

3. <u>https://cnx.org/contents/tWu56V64@33.122:-mZCQZc7@5/Introduction</u> **Reference:**

P.-N. Tang, M. Steinback, and V. Kumar Introduction to

Data Mining, Addison Wesley, 2018.

(Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk from the Frontline. O' Reilly. 2014

Description: Data science process, data preprocessing, exploratory data analysis, data visualization, basic statistics, basic machine learning concepts, classification and prediction, similarity assessment, clustering, post-processing and interpreting data analysis results, use of data analysis tools and programming languages and data analysis case studies.

Objectives: By the end of the course a successful student should:

- Students will develop relevant programming abilities.
- Students will demonstrate proficiency with statistical analysis of data.
- Students will develop the ability to build and assess data-based models.
- Students will execute statistical analyses with Python software.

• Students will apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively

Prerequisites: MATH 3339 and COSC 2430.

Software: Make sure to download Anaconda <u>https://repo.anaconda.com/</u>. Let me know via email in case you encounter difficulties.

Academic Honesty: University of Houston students are expected to adhere to the Academic Honesty Policy as described in the UH Undergraduate Catalog. "Academic dishonesty" means employing a method or technique or engaging in conduct in an academic endeavor that contravenes the standards of ethical integrity expected at the University of Houston or by a course instructor to fulfill any and all academic requirements. Academic dishonesty includes, but is not limited to, the following: Plagiarism; Cheating and Unauthorized Group Work; Fabrication, Falsification, and Misrepresentation; Stealing and Abuse of Academic Materials; Complicity in Academic Dishonesty; Academic Misconduct.

Refer to UH Academic Honesty website (http://www.uh.edu/provost/policies/honesty/) and the UH Student Catalog for the definition of these terms and university's policy on Academic Dishonesty. Anyone caught cheating will be reported to the department for further disciplinary actions, receive sanctions as explained on these documents, and will have an academic dishonesty record at the Provosts office. The sanctions for confirmed violations of this policy shall be commensurate with the nature of the offense and with the record of the student regarding any previous infractions. Sanctions may include, but are not limited to a lowered grade, failure on the examination or assignment in question, failure in the course, probation, suspension, or expulsion from the University of Houston, or a combination of these. Students may not receive a W for courses in which they have been found in violation of the Academic Honesty Policy. If a W is received prior to a finding of policy violation, the student will become liable for the Academic Honesty penalty, including F grades.

Technology statement below as requested by the Provost's Office:

Computer and internet access required for course. For the current list of minimum technology requirements and resources, copy/paste/navigate to the URL http://www.uh.edu/online/tech/requirements. For additional information, contact the office of Online & Special Programs at UHOnline@uh.edu or 713-743-3327.

	Date	Topics	Open Textbook Reading
Week 1	Tuesday, August 25, 2020	Introduction to Data science	
	Thursday, August 27, 2020	Data science Overview	

Week 2	Tuesday, Sep 1, 2020	Machine Learning Data Cleaning	
	Thursday, Sep 3, 2020	Data Processing Startup Example	B1: p 30-35
Week 3	Tuesday, September 8, 2020	Statistical Learning	
	Wednesday September 9	DROP DEADLINE	
	Thursday September 11, 2020	Data Exploration Data Similarities & Distances	B1: p 54-81
			D1
Week 4	Tuesday, September 15, 2020	Linear Regression	B1:p 171-213
	Thursday, September 17, 2020	Linear Regression (Python Example)	
Week 5	Tuesday, September 22, 2020	Logistic Regression Dimensionality reduction - PCA	B1: p 359-399
	Thursday, September 24, 2020	Introduction to Classification KNN	B1: p 301-312 B2: p 32-48
Week 6	Tuesday, September 29, 2020	Exam 1	
			
	Thursday, October 1st, 2020	Decision Tree	
Week 7	Tuesday, October 6, 2020	Random Forests KNN	B1: p 317-322 B2: P 49-68

	Thursday, October 8, 2020	Naive Bayes	B1: p 414-439 B2: p 113-140
Week 8	Tuesday, October 13, 2020	Model Evaluations Metrics	
		Ridge - Lasso	
	Thursday, October 15,2020		
Week 9	Tuesday, October 20, 2020	Lines/SVM	

	Thursday, October 22,2020	Dimensionality reduction (feature extraction) Wrap Up classification	
		Exam 2	
week 10	Tuesday,October 27,2020		
	Thursday, October 29,2020	K-Means	B1: p 523- 537 B2: 218-250

Week 11	Tuesday, November 3, 2020	Hierarchical Clustering Heatmap	
	Tuesday November 3 rd	DROP DEADLINE	
	Thursday, November 5, 2020	Storytelling	
Week 12	Tuesday, November 10, 2020	DBSCAN	
		Cluster Validity Silhouette	
	Thursday, November 12, 2020		
Week 13	Tuesday, November 17, 2020	Neural networks	
	Thursday, November 19, 2020	Apriori and Association rules	B1: p 603- 617 B2: p 69-87
		Dun amia Hashing Maulus tuas	
Week 14	Tuesday, November 24, 2020	(Optional)	
	Saturday December 5 th , 2020	Last day of class	
	Thursday December 10 th ,2020	Final Exam @ 8:00 AM – 11:00AM	

Grading Policy

The final numeric grade is computed based on student's performance in weekly assignments and exams/quizzes. The final numeric grade for the course will be determined as follows:

✓	Homework assignments (NO drop of any HW)	25%
✓	Lab work /Workbook (drop the lowest)	20%
✓	Exam 1 (Tuesday 9/29)	15%
✓	Exam 2 (Thursday 10/29)	15%
✓	Final Exam	25%

Labs (potentially): Coding practices (using Python format. ipynb **only**) held sometimes during class times. **One lab assignment will be dropped** (the one with the lowest grade).

Exams: Held during class times.

Homework: Four assigned HomeWorks. Topics: Regression and Classification (Week 4); decision Tree and KNN(Week 7); SVM and dimensionality(Week 10); and Clustering with cluster validity(Week 12). Students will submit their written homework by scanning and uploading their work in Blackboard (or as .ipynb).

Final Group Project on Storytelling (as final Homework):

- You will form a group of 3-4 members.
- Agroup assignment, consisting of students teaming up (5 points), deciding on the data set of interest (5 points), posing research questions (5 points) and applying ML techniques to address those questions (35 points). Each group will eventually submit a report/online presentation of research findings and member contributions.

Grading Scheme:

A>=92.5 Excellent	A->= 89.5 and < 92.5	B+>=86.5 and < 89.5
	Outstanding	Very Good
B > = 83.5 and <86.5	B->=79.5 and < 83.5	C+>=76.5 and < 79.5
Good	Above Average	High Average
C>=72.5 and <76.5 Average	C->=69.5 and <72.5 Low	D+>=65.5 and <69.5 Below
	Average	Average
D >=62.5 and <65.5 Poor	F < 62.5 Failing	