

COSC 2430 Data Structures and Algorithms

Course Information

Term and Year:Fall 2020Location:OnlineMeeting Days/Times: Tuesdays -Thursday 10:00 AM -11:15 AM && - 11:30 AM- 12:45 PM

Instructor Information

Name:Nouhad RizkEmail Address:njrizk@uh.eduOffice Hours:Tuesday – Thursday 12:45 PM – 1:15 PM

Course Description

Covers the design, analysis, and implementation of data structures and algorithms to solve problems using an object-oriented programming language. Topics include elementary data structures, (including arrays, stacks, queues, and lists), advanced data structures (including trees and graphs), the algorithms used to manipulate these structures, and their application to solving practical engineering problems.

Course Materials

• Text Book

Required Weiss, Mark A. *Data Structures and Algorithm Analysis in C++*. 4th Edition. Pearson 2014. ISBN-13: 978-0-13-284737-7

Open Book:

https://open.umn.edu/opentextbooks/textbooks/open-data-structures-an-introduction

Webcam/camera is REQUIRED for exams

- <u>Reference</u>
- Malik, D S. Data Structures in C++, 2nd Edition, CengageLearning

• Compiler

- Microsoft Windows Visual Studio 15 or higher
- o GCC 5.3 for Linux
- Clang or g++ compilers for OS X (check online for latest versions)

Program Objectives

The objective is to prepare students such that within a few years of graduation they will be able to secure for themselves a successful computer science career and contribute decisively to the improvement and development of technology by demonstrating their ability to:

- 1. Address and solve complex broadly defined problems related to their discipline and field of specialization
- 2. Work as team members, show leadership, and communicate technical concepts and ideas effectively
- 3. Manifest a high level of professional integrity, and make ethical decisions that will have a positive impact on the organization and society
- 4. Embrace and practice lifelong learning, continue personal growth, and professional selfimprovement.

Student Learning Outcomes

Based on satisfactory completion of the course, a student should be able to:

- Demonstrate an understanding of basic data structures (such as an array-based list, linked list, stack, queue, binary search tree) and algorithms.
- Demonstrate the ability to analyze, design, apply and use data structures and algorithms to solve problems and evaluate their solutions.
- Demonstrate an understanding of analysis of algorithms. Study an algorithm or program code segment that contains iterative constructs and analyze the asymptotic time complexity of the algorithm or code segment.

Important Notes:

1. Our time together is very valuable; please treat it accordingly. By enrolling in this course, you make a personal contract with me and your classmates to attend and diligently participate in every class activity. Students are expected to be courteous toward the instructor and their classmates throughout the duration of this course.

2. Being mostly inattentive (in the judgment of the instructor or the TA's), arriving late, and leaving the classroom in and out will disqualify you from participation credit for the course (5%). It is important to be respectful of your fellow students and the shared course environment. It is a professional learning situation, not your living room.

3. Homework/labs/GA must be submitted on the due date. No late or email submissions will be accepted. If ever accepted (Logical reason) a 1% penalty will be applied per late hour.

4. MAKE-UPEXAMS: There are no make- up exams.

5. **3-Day Policy**: One has **3 days** starting from the end of the class time in which the graded assignment/exam papers have been distributed and/or posted in order to object to the score of that assignment or exam. The objection shall be submitted electronically by emailing the TA and the instructor.

6. Academic Honor Code: As a student, you join a community of scholars who are committed to excellence in learning. I assume that students will pursue their studies with integrity and honesty.zero-tolerance for cheating, whether in exams, quizzes or programming assignments. Plagiarism, copying and other anti- intellectual behavior are prohibited by the university regulations. Violators will face serious consequences.

7. **Student Conduct:** Disruptive behavior inside or outside class may result in disciplinary actions and academic failure. Students must refrain from disturbing the peace and good order of the university. For more details, please refer to http://www.uh.edu/dos/pdf/codeofconduct.pdf

8. Academic Integrity: Cheating or any other suspected violations of academic integrity will not be tolerated and will be reported to the Department of Computer Science, Director of Undergraduate/Graduate Studies and if substantiated may result in significant penalty. It is each student's responsibility to read and understand the Academic Honesty Policy found in the Student Handbook (http://www.uh.edu/academics/catalog/policies/academ-reg/academic-honesty/).

9. Plagiarism: Plagiarism is using someone else's work without proper acknowledgement. This includes getting help from a friend or colleague and online material. When using someone else's work, always cite the source. Plagiarism is considered a serious breach of academic integrity. Any breach of academic integrity or plagiarism would result in a minimum of one full letter grade reduction over the final score and possible expulsion from university.

10. Mentors can do a replacement quiz; the mentor should send the grade to your TA.

Expectations

- ✓ Workload: This is a 15-week-three semester credit course. Students should expect 2.5 weekly hours of classroom faculty instruction, and a minimum of 5 hours of out-of-class studentwork per week.
- ✓ Lab Work is 5% of the total grade
- ✓ Students are expected to meet with mentors Room PGH 224 for any additional help.

Course Methodology

This course emphasizes the choice and use of appropriate data structures and efficient algorithms in implementing applications. Instructor and students interact directly in class. During the lectures, the instructor discusses the behavior of the data structures and the efficiency of algorithms that operate on the data.

This course will combine traditional lecturing with hands-on exercises to reinforce student learning. Students are expected to attend classes regularly, take tests, and submit assignments and other work at the times specified by the instructor.

Week	Dates	Торіс	Reading
1	8/25 – 8/27		Chapter 1
			includes material that serves as a review of basic C++. Included is a
		Basic C++	discussion of templates, recursions
		Recursion	and important constructs in C++ class design.

The instructor reserves the right to make changes to the course schedule as needed under unexpected circumstances. These changes will be announced in class and on Blackboard.

2	9/1 – 9/3		
		Array-Based	Chapter 3: 3.1,3.2,3.3
		Implementations	Implementations of a significant list class
		Link-Based	
		Implementations	
3	9/8 – 9/10		Chapter 3: 3.6
		Stacks	Implementations of a significant stack class
		Stack Implementations	Wednesday September 9 DROP DEADLINE
4	9/15 –9/17		
		^	Chapter 3: 3.7
		Queues	less less stations of a significant Quay aloop
		Queue Implementations	Implementations of a significant Queue class
5	9/22 –9/24		Chapter 2
			Explains asymptotic analysis
		Algorithm Efficiency	and its major weaknesses. In-depth understanding of logarithmic
			running time. Analyze recursive programs by intuitively converting them into iterative programs
		Sorting	Chanter 7: 7 2 7 3
		Algorithms and	All the important general-purpose sorting algorithms are covered and
		Their Efficiency	compared. Four algorithms are analyzed in detail: insertion sort,
			selection,Shellsort, heapsort, and quicksort.
6	9/ <mark>29</mark> -10/1		Chapter 7:
		Exam 1	/.4, /.5, /.6 /./
		Sorted Lists and	
		Their	
		Implementations	
7	10/6- 10/8		Chapter 6:
		Queues and Priority	priority queues. Binary heaps are covered, and the implementations of
		Queues	priority queues.
		Heaps	
8	10/13 – 10 /15		
	/15	Queue Implementations	

9	10/20-10/22		Chapter 4
		Trees	Emphasis on search trees, including external search trees (B-trees)
10	10/27– 10/29	Heaps	
	10,25	Evam 2	
11	11/3 – 11/5	Hashing	Chapter 5
			hash tables, including the classic algorithms such as separate
			chaining and linear and quadratic probing,
			Tuesday November 3rd: DROP DEADLINE
12	11/10-		
	11/12	I ree Implementations	Chapter 4
	4 4 / 4 - 7	Balanced Search Trees	
13	11/1/- 11/19		Chapter 4
	11/15	AVL Iree	Emphasis on AVL trees.
	11/24		
14	11/24-	Graphs	Chapter 9
		Graphs	Chanter 10
		Greedy (Huffman code	Greedy algorithms
		Ontional)	
15	12/5	Last Day of the	
15		semester	(Regrade)
		December 5 th ,	
		2020 Saturday	
		<mark>NOTHING IS</mark>	
		ACCEPTED AFTER	
		THIS DATE	

Grading Policy

The final numeric grade is computed based on student's performance in weekly assignments and exams/quizzes. The final numeric grade for the course will be determined as follows:

\checkmark	Homework assignments (NO drop of any HW)	30%
\checkmark	Lab work (drop the lowest)	15%
\checkmark	Exam 1 (Tuesday 9/29)	15%
\checkmark	Exam 2 (Thursday 10/29)	15%
\checkmark	Final Exam	25%
\checkmark	Participation: GA Assignment and/or In class Quizzes	5%

Grading Merit

A>=92.5 Excellent	A->= 89.5 and < 92.5 Outstanding	B+>=86.5 and < 89.5 Very Good
B > = 83.5 and <86.5 Good	B->=79.5 and < 83.5 Above Average	C+>=76.5 and < 79.5 High Average
C>=72.5 and <76.5 Average	C->=69.5 and <72.5 Low Average	D+>=65.5 and <69.5 Below Average
D >=62.5 and <65.5 Poor	F < 62.5	Failing

Programming Assignments/ HW with topics(tentative)

HW: NO drop of any HW	Posted Mondays	Due Mondays
HW 1 (Array & recursion)	Beginning of week 1	Beginning of week 2
HW 2 (List)	Beginning of week 2	Beginning of week 4
HW 3 (Stack &list)	Beginning of week 5	Beginning of week 8
HW 4 (Queue)	Beginning of week 8	Beginning of week 11
HW 5(Trees)	Beginning of week 11	Beginning of week 13
(regrade)		

Labs with topics(tentative)

Labs	Posted (Wednesdays)	Due (Wednesdays)
Lab1 on files	Mid of week 3	Mid of week 4
Lab2 on linked list as Arrays and recursion	Mid of week 5	Mid of week 6
Lab3 sorting with clock	Mid of week 7	Mid of week 8
Lab 4 Round robin queue	Mid of week 9	Mid of week 10
Lab5 Hashing	Mid of week 11	Mid of week 12
Lab6 On BST or AVL	Mid of week 13	Mid of week 14
Lab 7 Adjacency Matrix	Mid of week 14	Mid of week 15

Group Assignments with topics(tentative)

GAs	Posted (Tuesdays)	Due (Tuesdays)
GA1 on linked list as Arrays and recursion and	Mid of week 4	Mid of week 7
stacks		
GA2 on sorting with clock and queue	Mid of week 8	Mid of week 11
GA3 on Trees and/or graphs	Mid of week 11	Mid of week 14

Resubmission Policy

Students can resubmit each homework for a regrade in the next 48 hours after the deadline with 20% penalty. Students do not need to notify anybody; the homework will be regraded automatically.

Regrading Policy

No HW will be dropped, however you can repeat any previous homework for a full grade, through <u>final</u> <u>regrading</u>.

Extra programs

Students can submit any program done in the class/lab or from the end of the book chapter as extra program and upload to the server under separate folders.

Each extra program should be in a separate folder's name named as **extra_m_w_n**. (m means the month when the extra was given, should between 1-5. w means the week of the extra was given, should between 1-5. n means the number of the extra, if only one extra was given in that week, use 1, if two were given, use 1, 2, like extra_2_1_1 and extra_2_1_2. The order is important.)

All the extras should be under the root of your Linux server (upload .cpp and .h files)

For example the dayType is extra_1_3_1

Overloading	extra_1_3_2
Linetype	extra_1_3_3

Extras are NOT included in the Grading system

Extras are useful when the grade is on the upper end of an interval. For example, if a student has 82.9 upper end of B- and who has done many programs as extras, the grade might be pushed to B. However, if the student grade is 79.5 EXTRAS WILL NOT BE USEFUL

CAPS

Counseling and Psychological Services (CAPS) can help students who are having difficulties managing stress, adjusting to college, or feeling sad and hopeless. You can reach CAPS (www.uh.edu/caps) by calling 713-743-5454 during and after business hours for routine appointments or if you or someone you know is in crisis. No appointment is necessary for the "Let's Talk" program, a drop-in consultation service at convenient locations and hours around campus. http://www.uh.edu/caps/outreach/lets_talk.html

Wishing you a pleasant and a fruitful semester